Category Archives: ESP8266

ESP8266 Home Control Update

As the blog entry on using my home control code ROMS for ESP8266 is filling up and of course as much of the information is now dating I thought I’d do a new blog to bring everyone up to speed and move the conversation to this blog entry. The good news is  - the code is now running under SDK 2.1.0 – i.e. bang up to date at the time of writing.

Firstly – yes, everything works – but the procedure for flashing ESP-12 etc has changed ever so slightly. I have updated the binary files to run on Espressif SDK 2.1.0 and updated the RBOOT code I use for OTA (over-the-air updating) to the latest version.

Continue reading ESP8266 Home Control Update

Facebooktwittergoogle_pluspinterestlinkedin

ESP8266 Code Update

The code that forms a series of articles on this blog has now not been updated for some time – simply because it “just works” and has been doing so reliably for many months. However, I’ve been wanting to add bits to it and my problem was I was running dangerously low on iRAM. This would not affect the stack or reliability but would just stop me from continuously adding code.

Well, thanks to Espressif that is now history. The latest Esp8266 SDK, released just days ago, fixes a number of things on the ESP8266 – you can find the SDK here – you will need it if you wish to compile code but of course ROMS are available as usual.  The upshot for me is the return of nearly 800 bytes of iRAM which is something of a breath of fresh air.

Continue reading ESP8266 Code Update

Facebooktwittergoogle_pluspinterestlinkedin

Cheap NodeMCU Boards

ESP8266 NodeMCUThis could be the shorted blog I’ve ever written! We’ve been talking about ESP8266 recently and as I was running out of boards, I sent off for some of these from AliExpress – my favourite store next to Ebay.  At a total cost of just over £3 they had to be worth a go.

So on the LEFT you see the reset button – on the right you see the FLASH button – this might indicate that normal Arduino-style programming doesn’t work… so I put it to test with a sample BLINK program.

Continue reading Cheap NodeMCU Boards

Facebooktwittergoogle_pluspinterestlinkedin

ESP12S

ESP12SI’m looking forward to trying out the new ESP12-S – this one apparently has a better antenna – and by the look of the schematic (see page 15 – thanks Alexander) the resistors on reset, GPI))0,2 and 15 are already there.

That should simplify layout somewhat!

ai-thinker.com - www.ai-thinker.com/uploadfile/2016/0909/20160909073755898.pdf

Hmm, board layout with 0.1 pins, 3v3 reg with decent heatsink area underneath, maybe 3 mosfets…

So this should work with existing layouts. I’ve kept back an IoTBEAR adaptor and ordered a couple of these from Ebay sub- £2 each.

Facebooktwittergoogle_pluspinterestlinkedin

Microwave for the Weekend

tmp2DA0If you read the blog about the Maker Faire, I just came back with a bag of goodies and one of them is a microwave movement sensor.

Not the two-board solution I discussed a while ago that never really worked – this is a small, neat single board called an RCWL-0516 and here’s a Chinese link though if you get in touch with the fellow I mentioned at the Faire where I got mine – ABX-LABS (Ebay shop) he might have them. About £1 anyway.

So this board has 5 wires and not a lot of information out there, some of which is in Russian. I did found out enough to know that this unit is oscillating at around 3 Gig and you only need to use 3 of the 5 wires!

The unit will pick up movement up to 7m away and in the right circumstances can see right through wood! No silly comments about being irradiated please.

So I set it up on my bench, the 3 wires of interest are ground (obviously) VIN and VOUT. Stick 5v on VIN (will not work on 3v3) and a LED on VOUT – and you’re done – it works.

Well, that was easy and of course it WAS too easy. I took the board and applied it to one of our ESP8266 boards which have 5v – and took the output to Pin 14 which in the case of my software, is a de-bounced input which can send an automatic MQTT message on change.  Job done – except – it would not work. It seemed over-sensitive but after more careful checking – it really wasn’t taking too much notice of movement – instead triggering fairly regularly ALL ON IT’s OWN!  I tried putting a cap across the power, I tried putting a cap across the output – all to no avail.

In the process of having a gripe with Aidan that we’d been ripped, I put the board on my standalone test to show him it working – and decided to route ground and signal back to the ESP – it worked perfectly – then it twigged -  ESP8266 boards are prone to putting spikes on the power lines when transmitting!  I put a 10r resistor in series with the power and a tiny 330u 6v cap to ground at the Microwave board end – problem solved.

If you want to do something clever, the 16 pin logic chip – I stuck a scope on it and pin 12 gives off some interesting analog stuff!

In terms of sensitivity it pretty much works 360 degrees though supposedly it is most sensitive on the component side of the board direct on.

I spend half of my time waving my arms about at the normal room IR sensor to keep lights running – this I think will be MUCH better.

Have fun.

Facebooktwittergoogle_pluspinterestlinkedin

Grove LCD RGB Backlight

tmpD3E6Now, before anyone says anything – no I’m not advertising Seeed or their Grove stuff. It just so happens that over the weekend my pal brought some of their stuff over to have a play with and I was particularly taken by the LCD display. This is a typical Hitachi-style 16-character by 2 line LCD of the type that have been floating around since last century but which still are popular today I guess because of price. Anyway, this one marked “Grove-LCD RGB Backlight v1.0” is not particularly cheap but it has an RGB LED background and runs off I2c.

We tested it using the Seeed Studio WIO boards (more on that later). Lovely – want a pink background, or how about aqua, or mint -  well, you have full control over the RGB background with values 0-255 for each colour. It occurred to me that this really transforms the otherwise boring LCD display as you can use colour to indicate alerts etc.  For example on a thermostat display you could use orange for on, green for “reached set temperature” and blue for standby.

tmp52FBAnyway, as the WIO modules are little more than an ESP12 I thought it might be more useful to incorporate a driver for this display into my own ESP8266 code. Those of you familiar with the home control project will know that I keep updating the code for the Home Control 2016 project. So – I took a look at the Grove driver for this display – sadly it is in Arduino C++ format so I ended up doing quite a bit of changing to make it do what I wanted and in C – but ultimately it is in there and works a treat. Here are the new commands you can fire out in MQTT to the board with the new software on, using as usual GPIO4 and 5 for I2c.

{rgb_lcd_setup}

{rgb-lcd_clear}

{rgb_lcd_cursor:X,Y}

{rgb_lcd_background:RED,GREEN,BLUE}  // values 0-255 in each case

{rgb_lcd_write:”Your text”}

And that’s all there is to it. A nice addition to the code. I could add more if needed but I figured this minimal set of commands will do for most purposes.

I’m sure there will be other, compatible boards out there – if you know of them – do let us know.

So on the subject of the Seeed WIO boards, I’ve made a separate blog to follow on that – turns out that if you want to have a play, you can blow their code into an ESP-12 – but read the article coming soon.

Facebooktwittergoogle_pluspinterestlinkedin

Weather 2 Board and ESP8266

tmpE044NOT the cheapest board on the planet, I was handed a couple of these little boards by a friend this weekend.. the weather-2 board.

The board uses 2 i2c chips – the BME280 which as you may know is a miraculous little chip offering temperature, humidity and pressure readings all in one chip. I already support that in my ESP8266 code. Nothing new there and the chip works as expected when plugged in using this module.

What this board brings to the party is a chip I was previously unaware of – the si1132 – which in one chip offers readings of visible light level, UV level and IR levels.

The original library for this used floats and I’ve reduced that down to integers – looking at the variations I doubt I’ve affected accuracy at all – and these now come in the form of I2c commands in my ESP8266 code..

{si1132_uv}

{si1132_ir}

{si1132_visible}

Assuming the board is attached (or a board containing that chip that works at the same I2c address) – you can grab readings from this chip no problem.

I could envisage one of these outside – in a cover that protects it from the direct light and direct heat of the sun, offering all 6 readings – handy for lots of things.  Or maybe you just want an alarm when you’ve had too much sunbathing – I’ll leave it to others to figure out best uses.

Makes a useful addition to the home control project. Source of the ESP8266 code available as are ROMS.

Facebooktwittergoogle_pluspinterestlinkedin

Dazzling LED ESP8266

Itead LED controller

So… the other day, a parcel turned up for me – some samples from Itead. One of the boxes contained 4 strips of LEDS and a controller. The strips are maybe 20mm wide aluminium with staggered SMT LEDs on them – first a warm LED, then a COLD LED then.. etc.  Each strip is 500mm long and very thin.

The controller takes in 120-240v and gives out – wait for it…96-140v.

Itead LED controlller

I must’ve stared at them for 20 minutes wondering why an EARTH anyone would want to have a set of lights working at such high DC voltages (I still remember as a VERY small child having one of the first battery power valve radios which had a pair of 90v batteries. I also remember being stretched out on the floor in front of the fire, having a great time playing with this new toy until I stuck my fingers across the battery connector, putting 180v DC straight across my chest – not nice).

Itead LED controller

Then there was the fact that the wires to the mains needed to be soldered to the board rather than screw fittings – and I put the thing to one side until one of our readers wrote in to say that he had figured out that the ESP8266-based controller had one LED on GPIO12 and the other on GPIO14. Well, I really could not be bothered to figure out how the default software on this WIFI-controlled lighting controller works) – so I made a change to my house control ESP software to allow GPIO14 to be an output (it’s on the source code and the OTA update elsewhere in the blog). I could do PWM but that is for another day, for now I simply added on-off control – and when testing I realised there’s a green indicator light in the unit which operates like a SONOFF – ie +v is OFF – my “sonoff:1” command makes that flash the right way.

Itead LED controllerSo all well and good but I was still wondering what is wrong with ordinary LED STRIP. As this is serial you need a terminating connection at the far end taking the two ends from the lights to ground. I just used a blob of solder as somehow mine was missing out of the pack.

Over on the right you see the little stand-up processor board with the reset button and 4 way programming connector (3v3, serial and ground) – don’t try this at home with the mains plugged in!!

Itead LED controllerIt was not until I turned the unit on complete with LED strips that I realised the point of the high voltage! BOY is that bright – and in the example you see above, only the COLD lights are on as I screwed up somewhere and the WARM lights are not on  - I’ll fix that in daylight tomorrow. With both on, you could perform surgery there is so much light.  In short – if you need overall lighting for a shed or small office – this absolutely does the job. They have screw holes all along the strip length – but I simply stuck double sided adhesive on the 4 lengths of strip and they’re holding onto the ceiling along with the controller, just fine.

If I could just convince Itead to use 32Mb (4MB) FLASH parts on all their products…

Facebooktwittergoogle_pluspinterestlinkedin

I2C Expansion for Pi and ESP8266

Pi ExpansionWant 64 GPIO pins on your ESP8266 or Raspberry Pi? Read on.

If like me you are not THAT familiar with I2c, you might find the results of my  experiments interesting and perhaps even useful.

If like me you are not THAT familiar with I2c, you might find the results of my  experiments interesting and perhaps even useful.

PCF8574TSo I bought a couple of these i2c port expanders from China – mainly because I wanted something simple to mess with i2c on the ESP8266. It occurred to me that if I could get these working on a Pi, so I was sure of the addresses and commands etc., then on the ESP, I’d then get the confidence to do something more dramatic on the ESP8266 with i2c.

So ignoring for a minute the interrupt capability, these are pretty basic devices – using up 2 port bits (SDA and SCL) on your Pi or ESP, send an i2c start to them followed by an address then a byte to them – and the outputs light up accordingly. Set the outputs to 255 and read back a byte and you get the state of the pins as inputs. It doesn’t get any easier.

Well, not unless you completely mis-interpret the addressing as I did and spend ages chattering away to the wrong address. Anyway, let’s not dwell on that.

I noted that the outputs are HIGH by default.  Also note that in my experiments I have set the 3 DIP switches to ON (NOT as in the photo above).

Armed with the latest version of Raspbian Jessie on a pi2 or Pi3, connect ground on the device to ground on the Pi, VCC to 3v3 on the Pi, SDA to SDA (blue) on the Pi, SCL to SCL on the Pi. Simples. The boards have built-in pull-up resistors for i2c (which could pose an issue if you parallel a bunch of them up of course) so that’s it – no other new components needed other than a LED for testing. I used a 470r resistor in series with the LED.

Open a terminal on the Pi and type:

sudo pigpiod

That starts the new GPIO library daemon running in the background.

Now here is a short file that will set all the outputs to 0 – running Python…

import pigpio

pi1 = pigpio.pi()
pi1.write(18, 0)

b=pi1.i2c_open(1,39)
pi1.i2c_write_byte(b,0)
pi1.i2c_close(5)

Nice but then my pal Peter Oakes pointed out to me that I’d end up loading the entire Python environment  every time I wanted to change an output.. so I started experimenting with C code… just turning GPIO18 (on the Pi) on and off for starters…. see the line that says gpioWrite(18,0);  that turns the port off. Substitute a “1” to get the opposite effect.   All of this worked a treat.. “b” here ends up containing a handle.

#include <pigpio.h>
#include <stdio.h>

void main()
{
if (gpioInitialise() < 0)
{
puts("erm no"); // pigpio initialisation failed.
}
else
{
gpioSetMode(18, PI_OUTPUT);
// pigpio initialised okay.
gpioWrite(18, 0);
}
}

The code above once compiled failed the first time – I realised you must NOT have the daemon running when using this. so a quick reboot later and I was in business.

Oh, here’s how to compile a simple C program like that – make sure it’s a text file, say in your /home/pi directory.

gcc -Wall -pthread -o prog prog.c -lpigpiod_if2 –lrt

See where it says “prog” – change that to the name of your program. Takes seconds.

Anyway, I was just about to set everything up in C for i2c etc. when I discovered… PIGS

sudo pigpiod
pigs w 18 0
pigs w 18 1

Note – no sudo needed for the commands and presumably one would run that daemon (pigpiod) at startup. This looked like a nice simple route – dead easy for Node-Red as you can just issue the commands in an EXEC function and pass the parameters in the payload – so next would be to try i2c….

pigs i2co 1 39 0
pigs i2cwb 0 0 0
pigs i2cwb 0 0 255
pigs i2cwb 0 0 1
pigs i2cwb 0 0 2
pigs i2cc 0

The first command visually returned 0 – hence my use of 0 later in the code as the “handle”. I order, I set the expander to all off, all on, then the first bit only on – then the second bit only on and finally I closed the handle.

Something to note is that I2c lines need pull-up resistors – and this board has them already built in – unfortunately they are 1k pullups – fine if you only have one board, not a lot of use if you want to put several in parallel. After discussion we think that possibly the two relevant resistors might be replaced by 10k in which case you could then run several in parallel (with different addresses) but we’ve not tested that.

Oh, making that daemon permanent… I did that with a command line edit “sudo nano /etc/rc.local” -  and added the line “sudo /usr/bin/pigpiod” – and rebooted…. no problem.

Update November 9, 2016

The final stage of this experiment gives my ESP8266 software the ability to achieve the same thing, losing 2 wires to get 64 new ones (YES, 64), a net benefit of 62 I/O lines, could be worthwhile as the ESP8266 isn’t exactly brimming with IO lines.

I2C

Above you see (blue) our ESP-12 board, fastened to an FTDI for power, and wired by jumper to one of the PCF8574T boards - clearly you'd need 8 of them to get 64 lines and I'd be wary as they have pullup resistors on the data lines. I'd remove them on all but one.

With a typical Chinese PCF8574T board which includes pullups, I’ve added new commands to the ESP8266 Home Control software as of my software version 1.6.52 – the xport command.

Example:

{xport:0,1}

sets the lowest bit of the first (address 39) expander high (the 0 is a mandatory argument above – see future blogs) whereas:

{xport:0}

returns the state of the first (LSB) bit of the first of up to 64 bits.

On power up these devices are HIGH - and the software defaults to high on power up. If you mess with a port bit, you need to set a bit high before you can use it as an input. Here is the datasheet for this chip – and here is a typical Chinese expansion board.  With GPIO4 on our little boards hooked to SCL and GPIO5 hooked to SDA – the new commands work a treat.

In the above photo – address 39 equates to all DIP switches set to ON (that’s high or 7). If you set number 3 to off – that is address 38 (bits 8-15) etc. (simple binary selections – you can make the device work as anything from 32 (all switches OFF) to 39 (all switches ON) but before you go connecting eight of them up – bear in mind the comments about pull-ups above.

I’ve been doing a little more on these as you’ll see in other parts of the blog – but the upshot is – you have to ask yourself if these are worth the money. In my original blog I pointed to an Ebay price of £2.35  - but in fact from AliExpress they are only £1.20 and so I’ve amended the link in the blog accordingly.  However as you’ll see in other blog items – as I’ve learned I’ve realised they are not necessarily the best bet. I’ve now made a simple “Nano i2c peripheral” from a Nano board – and they cost just a few pence more – but you can make  NOT only an 8-bit expander but also get some A/D, some PWM and some A/D thrown in – hell I’m even putting an LCD display driver in just for the sake of it – and I’ll call it the kitchen sink peripheral.

However if you do like the look of these chips, you’ll note they say they work on 100Khz I2c. That of course is true and I’ve not experimented with anything other than close up – lets say less than 250mm away – but I’m currently running them a HELL of a lot faster than that. I’ve only speeded up the clock for writes and reads – note the wide bits around the edges but still – quite nippy.

faster I2c

Hope you found the above useful. For more information on the ESP software – go to the relevant page on the blog. There is of course the main Home Control 2016 page.

Facebooktwittergoogle_pluspinterestlinkedin